Manohar Sripada

Paul Anderson photo

Senior Engineering Manager

Manohar is a Senior Engineering Manager at Target. He leads teams in Search, focussing on autocomplete, spellcheck, and contextualisation. He has contributed in bringing state of art experience in various Search areas like dynamic facets, null & low recovery etc. Apart from Search, he is also responsible for leading efforts in applying NLP & ranking on product reviews at Target. Previously, he has worked on developing large scale systems at Oracle & IBM. Manohar has an Electronics Degree from Andhra University.

Manohar Sripada is speaking at the following session/s

Context-Sensitive Autocomplete Suggestions Using LSTM and Pair-Wise Learning at Target

Sessions | 1:55PM - 2:25PM |

Autocomplete is a predominant feature in e-commerce search. By being relevant, autocomplete should help users find the query they intended to type quickly and with minimal keystrokes. This talk is about how Target achieves autocomplete by considering the user’s context as a signal for re-ranking query suggestions. The context is based on a diverse sequence of events performed by a user on the website. It is generated using an LSTM model & fed into the Autocomplete service which re-ranks suggestions accordingly. This entire system is designed to work at a high scale in real-time, with low latencies.

Intended Audience
Anyone interested in Machine Learning (ML) techniques for search relevancy (e-commerce or other, and a basic ML background would be helpful) and anyone looking to improve their search autocomplete experience.

Attendee Takeaway
Gain insights into how the Autocomplete experience is powered at Target using state-of-the-art deep learning algorithms and how it is served in real-time at scale.

Additional speakers